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We cons ider  a contact  p r o b l e m i n  the theory of e las t i c i ty  in a genera l  formulat ion.  We give 
a nonl inear  equation for  de te rmin ing  the boundary of the contact  region and some fo rmulas  
connect ing the fundamental  physica l  quant i t ies  with a cha r ac t e r i s t i c  p a r a m e t e r  of the contact  
re gion. 

The contact  p rob lem is constantly a t t rac t ing  the attention of theore t ic ians  and engineers .  Along with 
purely  mechan ica l  appl icat ions ,  the study of p r o c e s s e s  of heat  exchange and e l e c t r i c a l  conductivity at the 
contact of solid deformed  bodies  r e q u i r e s  that we know the contact  region and the distr ibution of contact  
p r e s s u r e .  The la t te r  is n e c e s s a r y ,  for example ,  in de te rmin ing  the true contact  a r ea ,  which cons i s t s  of 
the contact  reg ions  of the mic rononuni fo rmi t i e s ,  and cons i s t s  of the total  of only a smal l  pa r t  of the m a c r o -  
scopic region.  Unlike the mixed boundary-va lue  p rob lem,  the contact  p rob lem in e las t ic i ty  theory has an 
unknown dividing line for  the boundary condit ions,  which also r e p r e s e n t s  the pr inc ipa l  difficulty in solving 
the th ree -d imens iona l  p rob lem.  This  p rob lem was invest igated in the genera l  formulat ion in [1], where  
the p rob lem is divided into a s e r i e s  of l inear  p rob l ems  on plane s t amps  and a nonl inear  sys t em for  d e t e r -  
mining the i r  contours .  In the p re sen t  a r t ic le  instead of this we p resen t  a nonlinear  equation and a~so some 
fo rmu la s  that give,  in quad ra tu re s ,  the dependence of the magnitude of the penetra t ion of the s t amp on a 
c h a r a c t e r i s t i c  p a r a m e t e r  of the contact  region.  Although we consider  only the contact  of a s t amp with an 
e las t ic  body below, all  the a rguments  can also be extended to the case  of the contact  of two e las t ic  bodies.  

1. We cons ider  the contact  of a smooth r ig id  s t amp with an e las t ic  body. Assuming  the d i sp lacement  
of each point M(r) of the sur face  of the body to be on a tangent to the sur face ,  and assuming  para l l e l  d i s -  
p lacement  of the s tamp,  we denote the la t te r  by w(r,  k). Here  k is a p a r a m e t e r  that de t e rmines  the contact  
p r o c e s s .  I t  can be,  e,  g . ,  a genera l  contact  fo rce ,  or  the s ize of the contact  region.  The re  can also be 
s e v e r a l  de te rmin ing  phys ica l  p a r a m e t e r s ,  when, for example ,  s eve ra l  unconnected s t amps  penet ra te  the 
body, but in the p resen t  ar t ic le  we will not cons ider  this case .  Jus t  as was done in [1], we take k = a ,  
where  ~ is the penet ra t ion  of the s tamp.  

The boundary conditions of the formula ted  p rob lem can be wri t ten in the fo rm 

{ ~ ( r , ~ ) = ~ - - f ( r ) ,  rESt ,  
p(r, a)----0, r~S~, (1) 

{ ~ ( r , ~ ) > ~ - - f ( r ) ,  rCS~, 
p(r, ~) > 0 ,  rCS~. (2) 

Here  p is the p r e s s u r e  component  n o r m a l  to the sur face  of the body (the tangential  component  equals  zero) ,  
S~ is the contact  reg ion ,  f(r) is the init ial  dis tance between the sur faces  of the body and the s t amp in the 
d i rec t ion of d i sp lacement  of the s tamp.  

Let  there  be a known d i s p l acem en t K( r ,  r ' )  of the point M(r) in the di rect ion of motion of the s tamp,  
genera ted  under  the action of a n o r m a l  concentra ted  fo rce ,  applied at the point M(r ' ) .  Then the d i sp l ace -  
ment  w(r ,  a ) ,  caused  by the d is t r ibuted contact  p r e s s u r e  p(r ,  v~), is obtained by the integrat ion 

~(r, a ) =  .f K(r, r') p(r ' ,  a)de.  (3) 
Sc~ 
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The boundary-value problem with boundary conditions (1) and (2) the re fore  reduces  to the sys tem 

S K(r, r ')p(r ' ,  a) d~ --- a - -  f (r). r E S t ,  
s~ (4) 

p(r, a) = 0, r~S~, 

.f K(r, r ')p(r ' ,  a ) d c r > a - - f ( r ) ,  r~S~, 
s~ (5) 

p(r, a) >0 ,  rES=, 

which, for each value of a ,  de te rmines  the contact  p r e s su re  and the contact  region Sc~. 

As is shown in [1], the solution of the problem (4)-(5) is r ep re sen ted  by the integrals  

p (r, ct) = I' p0(r; [F~]) d~ = p0(r; [F~]) d~, (6) 
0 t~ r 

t~ 

w(r, ~ ) =  S w0(r; [F~l)d~, (7) 
0 

where r a is the contour of the region S a ,  a r  is the value of a at which the point M(r) falls within the con-  
tact  region,  P0 and w 0 are  the solution of the problem of an adjoining par t icu lar  s tamp with base Sa .  By 
"adjoining" we have in mind a stamp whose surface coincides with the initial  surface of the body. The solu- 
tion of this problem is proport ional  to the value of its penetrat ion.  The quanti t ies P0 and w 0 cor respond  to a 
penetrat ion to a par t icu la r  depth; the re fo re ,  for  b rev i ty ,  below, we call  such stamps simply "par t icular"  
s tamps.  In the s implest  case  of an e las t ic  ha l f -space ,  e . g . ,  par t icu lar  s tamps,  we have simply plane s tamps,  
and the representa t ion  (6), (7) descr ibes  a r a the r  c l ea r  model.  We must emphasize  that P0 and w 0 do not 
depend di rec t ly  on a ,  and are  functions of the line r e ,  which is denoted by square brackets .  F o r  each func- 
tion fir) given beforehand,  the contact p roces s  is descr ibed  by a se r i e s  of par t icu la r  s tamps that,  for  each 
a ,  sat isfy the system 

.I K(r, r')po(r'; [ F j ) d 6 =  1, rESt ,  
s~ (s) 

po(r; [FJ) -~ 0, r~S~. 

It is easy to see that by using the represen ta t ion  (6)-(7), we at once satisfy the second equation in (4), 
and the conditions for  the displacement  can be wri t ten in the form 

~Wo(r; [ F ~ ] ) d 3 , : - c z - - f ( r ) ,  rESt ,  (9) 
0 

tz 

Sv;0(r, [ rx l )d~>~- - f ( r ) ,  r~S~. (10) 
0 

Thus,  the nonlinear contact  problem is divided into two par ts :  determinat ion of the boundary of the contact 
region in the loading p roces s  f rom the nonlinear sys tem (9)-(10), and a s e r i e s  of problems on par t icu la r  
s tamps (8) with contours  that a re  already given. The solutions of the la t ter  can then be integrated with 
r e spec t  to the penetrat ion pa rame te r .  In [1] we presen t  a calculation method for determining the boundaries  
f r o m  the sys tem (9)-(10). Essent ia l ly  it is a numer ica l  solution of the equation 

.I wo(R; [rxl)d~, = i~ - - r  (R), RE r . .  (11) 
0 

We assume that r/~ satisfies Eq. (11) for all 0 </x -< c~. Then it is not difficult to verify that condition (9) 
is sat isfied.  Investigating the asymptot ic  form of the specific solution near  the boundary,  we can show that 
the solutions F~ (0 < /z - a ) ,  which, being deformed during the loading p rocess ,  fill  the ent i re  r ea l  contact  
region,  and satisfy (10), at least  in the neighborhood of the boundary l~a, Thus,  sys tem (9)-(10) can be 
replaced by Eq. (11) for  the ent i re  family r/z. 

We note that equations of fo rm (6), (7) in the ax i symmet r ic  ease for a half -space were  given in [2], 
and to obtain the re la t ion between the penetrat ion and the radius  of the contact  c i r c l e ,  an equation of the 
type (11) was used there .  

1584 



2. Using the r e p r e s e n t a t i o n  (6)-(7), we obtain f o r m u l a s  that  a re  impor t an t  fo r  appl ica t ions .  

The tota l  fo rce  o f c o n t a c t o f a  p a r t i c u l a r  s tamp,  hav ing  the con tour  F a ,  equals  

Q (=) = .f Po( r; [ r ~ l )  co~ (n, ~) d~, 
S~ 

where  n is the v e c t o r  of the n o r m a l  to the su r face  of an e l a s t i c  body,  a is the d i sp l acemen t  v e c t o r  of the s tamp.  
The to ta l  fo rce  of an a r b i t r a r y  s t amp  equals  

P (a) = f p (r, a) cos (n, a) d(y. 
S~ 

F r o m  (6) we have 

P (a) == t 'Q (L) d2~. (12) 
0 

Let  the e l a s t i c  body be fas tened  a long  pa r t  of the su r face .  The e l a s t i c  e n e r g y  of the s t r e s s e d  state 
tha t  a r i s e s  dur ing  con tac t  equals  

l cz 1 f p ( r ,  cz)~(r, ~)cos(n, ~z)da= -~  ~p(r ,  co, cos(n, cr 

s~ s a 

- ~ P  ( ~ )  - N (~)  d ~  2 p (r, =) f (r) cos (n, ~) dcr = 

S~ 0 

where  

N (a) = f po(r; [r~]) f (r) cos (n, ~x) da: 
Scz 

Dur ing  pene t r a t ion  of  the s t a m p ,  the w o r k  
c~ 

P (~) d~ 
0 

is  done,  equal  to the e l a s t i c  e n e r g y  

aP (a) --  .i N (~.) d~. -= 2 S P (~) d~. 
0 0 

Dif fe ren t i a t ing  the las t  r e l a t i on  with r e s p e c t  to c~ and us ing  (12), we obtain 

P (a) = aQ (a) - - N  Ca). (13) 

If  we know the fami ly  of c o n t o u r s  Fa  depending on some  p a r a m e t e r  a and sa t i s fy ing  Eq. (11), then we 
can  obtain s imp ly  the dependence  of a on a .  The p a r a m e t e r  a fo r  the case  of a c i r c l e  can be the r ad ius ;  
fo r  the case  of an e l l ipse  it can be the s e m i a x i s ,  e tc .  We have 

P (a) = i Q (t) &z (t) dt = cz (a) Q (a) --  N (a). 
l dt 

Dif fe ren t i a t ing  this  equat ion  with r e s p e c t  to a, taking into account  that  a ,  P ,  Q, and N a re  now a l r ea d y  
funct ions  of a, we obtain 

- N ' ( a )  + ~ (a) Q'(a)  = O, 

a ( a ) =  N'(a) (14) 
Q'(a) 

This  i m p o r t a n t  fo rmula  is put in c o r r e s p o n d e n c e  with the contour  F a by the pene t ra t ion  a .  Having the so lu -  
t ion P0 and w 0 for  a defini te  fami ly  of  c o n t o u r s  F a ,  f r o m  Eqs .  (6), (7), (13), and (14) we can obtain the 
solut ion for  an a r b i t r a r y  funct ion f in q u a d r a t u r e s .  Although the d i s p l a c e m e n t s  w 0 do not appear  in the 
e x p r e s s i o n s  for  a ,  p,  and P ,  we m u s t  know them in o r d e r  to check  the fact  that  the se lec ted  fami ly  of con-  
tou r s  F a sa t i s f i e s  t~q. (11), i . e . ,  it is  r e a l i z e d  in the con tac t  p r o c e s s .  If  we cons ide r  the o n e - d i m e n s i o n a l  
c a s e ,  and the r eg ion  of  con tac t  is comple t e ly  d e s c r i b e d  by a single p a r a m e t e r ,  then the solut ion is i m m e d i -  
a te ly  e x p r e s s e d  in t e r m s  of  P0 f r o m  t~qs. (6), (13), and (14), and Eq. (11) does  not  r e q u i r e  checking.  In 
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the ax i symmet r ic  case ,  for  the pa r ame te r  a we can take the radius of the contact c i rc le .  For  example,  
for  an elast ic  half-space and stamp of a rb i t r a ry  form fir) it is easy  to wri te  out in quadra tures  the funda- 
mental  formulas ,  obtained e a r l i e r  by more  complex methods (Shtaerman [3], Galin [4], et al. ). The quan- 
ti t ies P0 and w 0 have the form 

2A 2 a 
Po(r, a ) -  , r-%a,z w(r, a ) - - - - - -a rcs in- - ,  r ~ a ,  (14) 

where A = G/(1--v),  G is the shear  modulus, and v is the Poisson rat io .  We obtain: 

2~x a I 

N (a) ~ ~ dO S Po(r, a) f (r) dr = 4Aa ; f (ax) xdx l / ~  , Q(a)= 4Aa, 

0 0 0 

1 

dN (a) = 4A i If (ax) + axf'(ax)] xdx dO (a) _ 4A, 
da .J 1/1--  x ~ ' da 

0 

1 

a(a) = I g(ax) + axf'(ax)] xdx , 
�9 ~ '  l _ _ X 2  
0 

1 

d~ (a) (' [2f'(ax) + axf"(ax)] x2dx 

da .} V - - i ~ 2  ' 
0 

as(g) a~ = 2A d~ ax [2f'(~x) + ~xf'(gx)] x ~ 
p(r, a)~- po(r, ~ ) ~ -  v t  - -  ' ` r 2 ' ' l - x ~ )  ' 

r r 0 

r ~ a ,  

a a 1 

j '  ~, da_~(~) 2:~ 3 ~ dg Jf dx arc sin r ~ r~(r, a ) =  Wo(r, { ) - - ~  d~ = 

0 0 0 

• [2f'(~x) + ~xf"(~x)] x~ , r >~ a. 

V ~ - x ~  

When the elast ic  body has a plane surface ,  by substituting (14) into (6), we obtain a par t i cu la r  case 
of the formula of M. G. Krein [5] for  solution of one-dimensional  in tegral  equations. We should note that 
the express ion  for the total force (13) was obtained ea r l i e r  by a different  method for e las t ic  ha l f -spaces  
[6] and a plane layer  [7]�9 

R, r ,  and r '  
w, p, w0, and P0 

f 
P and Q 
N 
a ,  ~, and X 
Sa 
r a  
K 
n 

a 

t ,  x, and 
d~ 
A = G/(l--v); 

G 

P 

NOTATION 

are the radius vectors; 
are the displacements of the points of the surface of the elastic body and the pressure 
under the stamp for a stamp of arbitrary and particular shape, respectively; 
is a function determining the shape of the stamp; 
are the total forces of contact for a stamp of arbitrary and particular shape; 
is the component of the total force; 
denote the value of the penetration of the stamp; 
is the contact region; 
is its contour; 
is the kernel  of the integral  equation; 
is the vec to r  of the normal  to the surface of the e las t ic  body; 
is a cha rac te r i s t i c  pa r am e te r  of the contact  region,  in par t icu la r ,  the radius  of a c i r -  
cle; 
are  var iab les  of integration; 
is an e lement  of area;  

is the shear  modulus; 
is the Poisson ratio. 
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